Enzyme-based plastic recycling is sustainable, study finds
A team of international researchers have found that enzymes-based recycling could be an environment-friendly approach for recycling PET
10 Sep 2021 | By Aultrin Vijay
A team of international researchers, through their recent study, found that enzymes-based recycling is a more sustainable approach for recycling polyethylene terephthalate (PET), a common plastic in single-use beverage bottles, clothing, and food packaging and suggested that it’s becoming increasingly relevant in addressing the environmental challenge of plastic pollution.
The study by researchers in the Bottle Consortium, including from the US Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) and the University of Portsmouth, was published in the journal Joule.
The analysis shows enzyme-recycled PET has potential improvement over conventional, fossil-based methods of PET production across a broad spectrum of energy, carbon, and socioeconomic impacts.
The concept, if further developed and implemented at scale, could lead to new opportunities for PET recycling and create a mechanism for recycling textiles and other materials also made from PET that is traditionally not recycled today.
PET ranks among the most abundantly produced synthetic polymers in the world, with 82 million metric tonnes produced annually; roughly 54% of PET is used in the manufacture of textiles for clothing and fibres for carpets.
"From all the plastics that were produced since the 1950s, less than 10% of it has ever been recycled," said Avantika Singh, a chemical engineer at NREL and first author of a new paper outlining the path toward enzyme-based recycling. "Most waste plastics end up in landfills."
The paper, Techno-economic, lifecycle, and socioeconomic impact analysis of enzymatic recycling of polyethylene terephthalate, appears in the journal Joule.
Her co-authors are Nicholas Rorrer, Scott Nicholson, Erika Erickson, Jason DesVeaux, Andre Avelino, Patrick Lamers, Arpit Bhatt, Yi Min Zhang, Greg Avery, Ling Tao, Alberta Carpenter, and Gregg Beckham, all from NREL; and John McGeehan and Andrew Pickford of the University of Portsmouth's Centre for Enzyme Innovation in the United Kingdom, who are also members of BOTTLE.
Bottle has been striving to address the problem of plastic pollution with two innovative approaches – 1) develop energy-efficient, cost-effective, and scalable recycling and upcycling technologies, and 2) design modern plastics to be recyclable by design.
The new research paper addresses the challenge of plastic recyclability. While images of discarded bottles floating in oceans and other waterways provide a visual reminder of the problems posed by plastic waste, the lesser-seen issue remains of what to do with the PET used to manufacture textiles for clothing and fibres for carpet.
The researchers modelled a conceptual recycling facility that would take in a fraction of the 3 million metric tonnes of PET consumed annually in the US. The enzymatic recycling process breaks down PET into its two building blocks, terephthalic acid (TPA) and ethylene glycol.
Compared to conventional fossil-based production routes, the research team determined the enzymatic recycling process can reduce total supply-chain energy use by 69-83% and greenhouse gas emissions by 17-43% per kilogram of TPA.
Additionally, an economy-wide comparison of virgin TPA and recycled TPA in the US shows that the environmental and socio-economic effects of the two processes are not distributed equally across their supply chain.
The proposed recycling process can reduce environmental impacts by up to 95%, while generating up to 45% more socioeconomic benefits, including local jobs at the material recovery facilities.
The study also predicts that enzymatic PET recycling can achieve cost parity with the production of virgin PET, thus highlighting the potential for this enzyme technology to decarbonise PET manufacturing, in addition to enabling the recycling of waste PET-rich feedstocks, such as clothing and carpets.
"That's one of the biggest opportunities," Singh said. "If we can capture that space – textiles, carpet fibres, and other PET waste plastics that are not currently recycled – that could be a true game-changer."